Functional Characterization of Pneumocystis carinii Inositol Transporter 1

نویسندگان

  • Melanie T. Cushion
  • Margaret S. Collins
  • Thomas Sesterhenn
  • Aleksey Porollo
  • Anish Kizhakkekkara Vadukoot
  • Edward J. Merino
چکیده

Fungi in the genus Pneumocystis live in the lungs of mammals, where they can cause a fatal pneumonia (PCP [Pneumocystis pneumonia]) in hosts with compromised immune systems. The absence of a continuous in vitro culture system for any species of Pneumocystis has led to limited understanding of these fungi, especially for the discovery of new therapies. We recently reported that Pneumocystis carinii, Pneumocystis murina, and most significantly, Pneumocystis jirovecii lack both enzymes necessary for myo-inositol biosynthesis but contain genes with homologies to fungal myo-inositol transporters. Since myo-inositol is essential for eukaryotic viability, the primary transporter, ITR1, was functionally and structurally characterized in P. carinii The predicted structure of P. carinii ITR1 (PcITR1) contained 12 transmembrane alpha-helices with intracellular C and N termini, consistent with other inositol transporters. The apparent Km was 0.94 ± 0.08 (mean ± standard deviation), suggesting that myo-inositol transport in P. carinii is likely through a low-affinity, highly selective transport system, as no other sugars or inositol stereoisomers were significant competitive inhibitors. Glucose transport was shown to use a different transport system. The myo-inositol transport was distinct from mammalian transporters, as it was not sodium dependent and was cytochalasin B resistant. Inositol transport in these fungi offers an attractive new drug target because of the reliance of the fungi on its transport, clear differences between the mammalian and fungal transporters, and the ability of the host to both synthesize and transport this critical nutrient, predicting low toxicity of potential inhibitors to the fungal transporter. IMPORTANCE myo-Inositol is a sugarlike nutrient that is essential for life in most organisms. Humans and microbes alike can obtain it by making it, which involves only 2 enzymes, by taking it from the environment by a transport process, or by recycling it from other cellular constituents. Inspection of the genomes of the pathogenic fungi of the genus Pneumocystis showed that these pneumonia-causing parasites could not make myo-inositol, as they lacked the 2 enzymes. Instead, we found evidence of inositol transporters, which would import the sugar from the lungs where the fungi reside. In the present report, we characterized the transport of myo-inositol in the fungus and found that the transporter was highly selective for myo-inositol and did not transport any other molecules. The transport was distinct from that in mammalian cells, and since mammals can both make and transport myo-inositol, while Pneumocystis fungi must transport it, this process offers a potential new drug target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Genomics of Pneumocystis Species Suggests the Absence of Genes for myo-Inositol Synthesis and Reliance on Inositol Transport and Metabolism

UNLABELLED In the context of deciphering the metabolic strategies of the obligate pathogenic fungi in the genus Pneumocystis, the genomes of three species (P. carinii, P. murina, and P. jirovecii) were compared among themselves and with the free-living, phylogenetically related fission yeast (Schizosaccharomyces pombe). The underrepresentation of amino acid metabolism pathways compared to those...

متن کامل

Use Of Razi Bovine Kidney Cell Line For Proliferation Of Pneumocystis Carinii

  Background and Objective: Pneumocystis pneumonia (PCP) has been historically the most prevalent opportunisticinfection in patients infected with the human immunodeficiencyvirus. Culture of the organism has not been faced with suitable success in artificial media, while various results have been reported for cell culture media. The aim of this study was proliferation of Pneumocystis carin...

متن کامل

Growth of Pneumocystis Carinii in Axenic Culture

SUMMARY In this research, which was done for two years, we investigated various liquid and solid media without feeder ceells, for the ability to support growth of P. carinii. Data obtained from counting the organisms nuclei showed that, addition of Cyclo­heximide, penicillin, & streptomycin to neopeptone­N-Acetyle Glucoseamine (N.P.G. medium) can provides growth requirements of organism in its...

متن کامل

Expression and characterization of recombinant human-derived Pneumocystis carinii dihydrofolate reductase.

Dihydrofolate reductase (DHFR) is the target of trimethoprim (TMP), which has been widely used in combination with sulfa drugs for treatment and prophylaxis of Pneumocystis carinii pneumonia. While the rat-derived P. carinii DHFR has been well characterized, kinetic studies of human-derived P. carinii DHFR, which differs from rat-derived P. carinii DHFR by 38% in amino acid sequence, have not b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016